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Time Series

Time series
⋄ describe the evolution of a process over time
⋄ are everywhere and ubiquitous: daily life, medical, food security, financial,
environmental...

⋄ increase in quantity
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Time Series

Formally, a time series
⋄ is a sequence of values ordered in time
⋄ either univariate or multivariate
⋄ possibly of different lengths

An example univariate time series:

Time series analysis include
⋄ forecasting: predicting future values
⋄ regression: predicting a continuous scalar variable
⋄ retrieval: finding similar time series
⋄ segmentation: dividing a time series into ”homogeneous” subseries
⋄ classification: today’s tutorial
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Time Series Classification

The goal is to associate an unlabelled time series with a class with the help of some
labelled time series (supervised learning).

???

Wheat Corn
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Time Series in Remote Sensing

An example satellite image time series
Sentinel-2 images over Brittany, France

Applications
⋄ vegetation monitoring
⋄ landscape changes
⋄ large scale study
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Time Series in Remote Sensing

An example application: crop type mapping at large scale
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Supervised classification framework

Two main steps:
1. Learning a model f such that f(x) ≈ y

DB
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satellite image time series
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time series x

2. Using the model f to map the study area

satellite image time series

mapping

land cover map

trained classifier f
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Inputs for learning

Satellite data, e.g., Sentinel-2 images
⋄ Where to download images?

⋄ Sentinels Scientific Data Hub
⋄ Copernicus DIAS
⋄ cloud platforms: GEE, Amazon,
Microsoft Planetary Computer

⋄ THEIA, USGSS, etc.

⋄ Common pre-processing steps:
⋄ coregistration
⋄ atmospheric correction
⋄ gapfilling
⋄ etc.

From satellite images to time series

Pixel-based analysis

time

time

Object-based analysis, e.g., averaging the
reflectance values within an agricultural parcel

Reference data
Usually vector files↰label y ∈ {1, · · · , C}

⋄ photo-interpretation
⋄ field campaigns
⋄ governmental data (e.g. Corine Land Cover)
⋄ collaborative data (e.g. Open Street Map)
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From time series to feature vectors

Feature design is a key step when using traditional machine learning algorithms
⋄ flatten reflectance time series
⋄ compute spectral features, e.g., Normalized Difference Vegetation Index
⋄ extract temporal features: statistical and phenological features
⋄ and even compute spatial features, e.g. Haralick or attribute profiles

TIMESAT example: extraction of key phenological stages [1]

[1] Jönsson, P., & Eklundh, L. (2004). TIMESAT—a program for analyzing time-series of satellite sensor data.
Computers & Geosciences, 30(8), 833-845.
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Evaluation

Types of evaluation: quantitative (accuracy, computational complexity,
explainability), visual, evaluation on a downstream task

Quantitative evaluation: split the labeled data into 3 spatially independent sets
a train set to learn the model’s parameters
a validation set to tune the hyperparameter values of the model
a test set to obtain a non-biased estimation of the model’s performance

Labeled data Polygon-split Grid-split

The confusion matrix:
Ground truth Dense predictions
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Practical activity

How to implement this framework?
⋄ develop your own Python code
⋄ use dedicated libraries, e.g., snap, OTB
⋄ use existing frameworks, e.g., iota2 or R-SITS package

Let us now move to our first practical activity!

Link for the notebooks: https://tinyurl.com/isprs2022
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