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About us

We are working on time series analysis
� unsupervised and supervised learning

� using machine learning and deep learning techniques

� in various contexts: large-scale mapping, low supervision, multimodal, etc.

Seasonal-trend decomposition
[1] Verbesselt, J., Hyndman, R., Newnham, G., & Culvenor, D. (2010).
Detecting trend and seasonal changes in satellite image time series.

Remote Sensing of Environment, 114(1), 106-115.

The BreizhCrops benchmark datasets
https://breizhcrops.org/
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About you

We would like to know you better and learn about your expertise.

Please go to menti.com
Enter the following code to participate in the survey: 5808 4593

Link to the poll.

Link to the results.
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menti.com
https://www.menti.com/alhjgc3zxtwy
https://www.mentimeter.com/app/presentation/n/alpg4tqpn6758tnp6bfiwpofjczu69tt/results


Tutorial Outline

July 7, 2024, from 09:00 to 12:30

Timeline Topic

09:00 - 09:15 Part I. Introduction to Time-Series Analysis
09:15 - 09:45 Part II. Time-series segmentation and break detection
09:45 - 10:15 Part III. Deep learning techniques for satellite image time series
10:15 - 10:45 Break
10:45 - 12:00 Practical session: (i) break detection, and (ii) deep learning

Links to all materials available: https://dl4sits.github.io/igarss2024
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Time Series

Time series
� describe the evolution of a process over time
� are ubiquitous: daily life, medical, food security, financial, environmental...
� increase in quantity and velocity
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Time Series

Formally, a time series
� is a sequence of values ordered in

time

� either univariate or multivariate

� not necessarily regularly-sampled

An example univariate time series:

Time series analysis includes
� unsupervised techniques – no prior knowledge on the data
� clustering: grouping similar time series together
� retrieval: finding similar time series
� segmentation: dividing a time series into ”homogeneous” subseries

� supervised techniques – requires labelled data (examples)
� forecasting: predicting future values
� (extrinsic) regression: predicting a continuous scalar variable
� classification: predicting a category that describes the time series
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Remote Sensing

A focus on satellites
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� a data increase

� acquisition of data in various
modalities

� open access to satellite
imagery and archives
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Time Series in Remote Sensing

Satellite image Time Series (SITS) are
� A stack of images of the same region

acquired over time
� that forms a complex datacube
� (possibly) irregularly sampled.

Sentinel-2 images over Brittany, France

The example of crop-type identification

Rapeseed in April
Can you guess where
rapeseed grew in this

image from May?
http://www.cesbio.ups-tlse.fr/multitemp/?p=1192

SITS are crucial to monitoring the Earth’s
dynamics over large areas
� landscape changes
� vegetation monitoring
� landslide analysis
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Satellite Image Time Series

SITS have various applications in agriculture, for land cover land use mapping, and soil

moisture, vegetation condition or socio-economic indicator estimation.

An example land-cover map of Victoria State, Australia
https://tinyurl.com/yc6juv6d

Life fuel moisture content (LFMC) estimation [1] International wealth index (IWI) predictions [2]

[1] Zhu, L., Webb, G. I., Yebra, M., Scortechini, G., Miller, L., & Petitjean, F. (2021). Live fuel moisture content estimation from MODIS: A deep learning
approach. ISPRS Journal of Photogrammetry and Remote Sensing, 179, 81-91.
[2] Pettersson, M. B., Kakooei, M., Ortheden, J., Johansson, F. D., & Daoud, A. (2023). Time series of satellite imagery improve deep learning estimates
of neighborhood-level poverty in Africa. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (pp. 6165-6173). 10
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How to process SITS?

From satellite images to time series

Pixel-based analysis

time

time

Object-based analysis, e.g., averaging the
reflectance values within an agricultural parcel

A taxonomy based on the types of input-output

Time-first, space-later [1]
� modelling temporal correlations

� learning dynamics

� ensuring temporal consistency

[1] Camara, G., Assis, L. F., Ribeiro, G., Ferreira, K. R., Llapa, E., & Vinhas, L. (2016, October). Big earth observation data analytics: Matching
requirements to system architectures. In Proc. of the 5th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data (pp. 1-6).
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Working with SITS

The tutorial focuses on approaches to automatically extract knowledge from
SITS.

A (very) brief supplement

1. Gather satellite images
� THEIA, USGSS, etc.
� Sentinels Scientific Data Hub, Copernicus DIAS
� cloud platforms: GEE, Amazon, Microsoft Planetary Computer

2. Prepare the data
� coregistration, atmospheric correction
� gapfilling
� normalisation

3. Run your analysis and evaluate it

What about a pipeline?
� develop your own Python/R code
� use dedicated libraries, e.g., snap, OTB, TorchGeo
� use existing frameworks, e.g., iota2 (Python/C++) or R-SITS

Let us now move to the first focus of the tutorial: break detection!
Link for all the tutorial’s material: https://dl4sits.github.io/igarss2024
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