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Time Series Classification

The goal of time-series classification is to associate an unlabelled time series with
a class with the help of some labelled time series (supervised learning).
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Supervised classification framework

How does it work in practice?

1. Learning a model f such that f (x) ≈ y

DB
Reference data
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training samples
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time series x

2. Using the model f to map the study area

satellite image time series

mapping

land cover map

trained classifier f

This framework requires the extraction of discriminative and relevant features.
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From Machine Learning to Deep Learning

Features are extracted automatically in deep learning
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Architecture design is the new feature engineering! One needs to choose

� the type of network,
� the number of layers (depth)
� the number of units per layer (width)
� the learning strategy (optimizer, learning rate)
� etc.
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How to train a network?

Training a network = finding parameter values that minimize the cost function

Σ
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ωi · xi + b
)

y = g(wT x + b)

Class 1

Class 2

Class 3

Dense #1Input Dense #2 Softmax

1. Forward step: estimate the cost function

2. Backward step: update the parameter values through gradient descent
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Deep Learning for SITS

Extensive research using deep learning techniques to exploit spatio-temporal
dependencies in SITS

�

We reviewed the use of four main architectures [1], including

� convolutional neural networks (CNN)

� recurrent networks

� attention-based approaches

� graph-based techniques

Source

[1] Miller, L., Pelletier, C., & Webb, G. I. (2024). Deep Learning for Satellite
Image Time-Series Analysis: A review. IEEE Geoscience and Remote Sensing
Magazine.
[2] Moskolaı̈, W. R., Abdou, W., Dipanda, A., & Kolyang. (2021). Application of
deep learning architectures for satellite image time series prediction: A review.
Remote Sensing, 13(23), 4822.
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A. Convolutional Neural Networks
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Convolution for images

Convolution is a common image-processing technique for images and signals.

The result of applying a convolution filter (here an edge detection filter) on a
Sentinel-2 image.
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Convolution for time series

How it works?
� The result of applying an edge detection on a time series:

� A convolution (actually a cross-correlation) between a time series x and a filter
w at instant t can be expressed as: (x ∗ w)(t) =

∑
i+j=t xi · wj

� Hyperparameters: (i) filter size, (ii) stride, and (iii) padding
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Convolutional Neural Networks

� Learn the weight of the convolution filter during the network training
� Stack several convolution layers
� first convolution layers extract simple features such as edges
� last convolution layers extract more complex features
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LeNet architecture [1]

[1] LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11), 2278-2324.
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CNN in remote sensing

Temporal Convolutional Neural Networks (TempCNN) [1] (and also [2])
� small architecture, especially when adding a global average pooling after the

convolution layers

� requires regular-spaced time series

input CONV 1 CONV 2 CONV 3 Flatten Dense Softmax

time

spectral Class 1

Class 2

Class 3

automatic feature extraction classification
[1] Pelletier, C., Webb, G. I., & Petitjean F. (2019). Temporal convolutional neural network for the

classification of satellite image time series. Remote Sensing, 11(5), 523.

[2] Zhong, L., Hu, L. & Zhou, H. (2019). Deep learning based multi-temporal crop classification. Remote
Sensing of Environment, 221, 430-443.
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Receptive Field

Receptive field illustration for two (Temp)CNN layers

input 
time seriessliding filter

output time
series for the
first layer 

time

output time
series for the
second layer 

small receptive 
field for the
first layer

large receptive 
field for the
second layer

time

The effective receptive field is the part of the input that affects a given neuron
indirectly through previous convolutional layers. It grows linearly with depth.
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B. Recurrent Neural Networks
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Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are intrinsically designed for sequence data:
� able to explicitly consider the temporal correlation of the data
� state-of-the-art architectures for forecasting tasks

A recurrent cell: at each timestamp t ,
� the state of the recurrent cell is affected by past information ht−1 and the current

time-series element xt

� (Wx ,Wh, bh) are the trainable weights and bias learned with backpropagation
through time

ht = tanh(Wx xt + Whht−1 + bh)

RNNs are good at
� considering past (possibly future) information during computations
� considering time series of different lengths
� sharing weights across time

but they are slow to train due to backpropagation through time, and fail to extract
long temporal dependencies
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C. Attention-based architectures
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Transformers

Attention mechanisms were initially proposed by [1],
they become popular with Transformers in 2017 [2]
� make the most of GPU
� encoder-decoder architecture similar to RNNs
� develop for language translation

or sentence generation

[1] Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and
translate. arXiv preprint arXiv:1409.0473.

[2] Waswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L & Polosukhin, I.
(2017). Attention is all you need. In Conference on Neural Information Processing Systems (NIPS)
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Attention mechanism

Objective: focusing on the relevant elements of the time series
� Given values v ∈ RL as a sequence of observations .
� We want to calculate an output h based only on classification-relevant

observations.
� This is realized by a weighted sum over attention scores α ∈ RL.

t1 t2 t3 t4

h =
∑L

t=1 αtvt = α
>v

v

not relevant relevant .2 .4 .1 .3

α>

.34 h

.6

.4

.1

.4

v

h = Attention(α, v) = α>v =
L∑

t=1

αtvt ,

α ∈ [0, 1]L, v ∈ RL
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Attention mechanism

Objective: focusing on the relevant elements of the time series
� Given values v ∈ RL as a sequence of observations .

� We want to calculate an output h based only on classification-relevant
observations.

� This is realized by a weighted sum over attention scores α ∈ RL.

A>

H

V

H = Attention(A,V ) = A>V , A ∈ [0, 1]L×L,V ∈ RL×Dv

where Dv is the dimension of the time series v .
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How to compute the attention scores?

� We calculate scores from one query q ∈ RDk and L keys K = (kt)t∈[1,L] ∈ RL×Dk

αt(q,K) =
exp (sim(q, kt))∑L
τ=1 exp (sim(q, kτ ))

� The query q provides a semantic context that is compared to a key kt for each
sequence element t using a similarity measure sim.

� The softmax normalization exp(·)∑
exp(·) ensures that

∑L
t=1 αt = 1.

A variety of similarity measures:
cosine distance sim(q, k) = q>k

‖q‖2‖k‖2
dot-product sim(q, k) = q>k

scaled dot-product sim(q, k) = q>k√
Dk
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Dot-Product Attention on Word Embeddings

Text example
� Each word is embedded into a 300-dimensional semantic Glove Vector,

e.g., estructure = E("structure") ∈ R300.
� Embeddings of two query words "structure" and "chaos" are compared to a

sentence of keys "life is what happens when you are busy making other plans"

.

life is what happens when you are busy making other plans
0.0

0.2

0.4

0.6

do
t-p

ro
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ct
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tte
nt

io
n structure

chaos
‖q‖2 cos(θ) ‖k‖2 = qTk

klife

kplansqstructure

qchaos

θ

Core idea:
If two words point in the same direction (θ ≈ 0) attention is high.
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Self-attention

How to determine the values, keys, and queries?

� the self-attention mechanism uses linear projection of the input sequences X

A>

H

VK

Q>

Attention(K ,Q,V ) =

A>︷ ︸︸ ︷
softmax

(
Q>K

)
V ,

V ∈ RL×Dv ,Q,K ∈ RDk×L,A ∈ RL×L

Self-AttentionW (X ) = Attention(XW K ,XW Q ,XW V )

= softmax
(
(XW Q)

T (XW K )
)(

XW V

)

Self-attention is usually applied in parallel heads,
which is known as multi-head attention.
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Transformers encoder

The Transformers are composed of encoder blocks that map a D-dimensional input
times series X of length L into a higher-level representation H ∈ RL×D . Each block is
composed of:

1. multi-head attention that mixes dimension L

2. feed-forward networks (convolutions of size 1 × 1) that mixes dimension D

A block also includes skip connections and normalization.

X ∈ RL×D

self-attention

feed-forward

(conv 1×1)

H ∈ RL×D

mixes D

dimension

mixes L

dimension
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Transformers in remote sensing

In SITS classification, we want to predict one label per time series, not a sequence
of words as in sentence translation or generation.

⇒ No need to compute the full attention matrix

[1] Sainte Fare Garnot, V., & Landrieu, L. (2020). Lightweight temporal self-attention for classifying satellite
images time series. In International Workshop on Advanced Analytics and Learning on Temporal Data (pp.
171-181). Springer, Cham.
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Conclusions

Deep learning has a high potential and impact in real remote-sensing applications

� various models inspired by natural language processing (NLP) and computer
vision

� specific SITS-architectures

� time-first, space-later strategies

... with current limitations:

� use on very high spatial resolution dense SITS (below 1-meter), at continental
and global scales, still requires the development of efficient techniques

� small volumes of training sets, especially for the temporal dimension, requires
new architectures and learning paradigms

� difficult to adapt to different climatic and anthropic regions, especially when
marked by seasonal effects.

[1] Rolf, E., Klemmer, K., Robinson, C., & Kerner, H. (2024). Mission Critical–Satellite Data is a Distinct
Modality in Machine Learning. arXiv preprint arXiv:2402.01444.
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Practical Session

Let us now move to the practical session to put into practice break detection and
deep learning for satellite image time series

Link for the notebooks: https://dl4sits.github.io/igarss2024/tutorial/
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