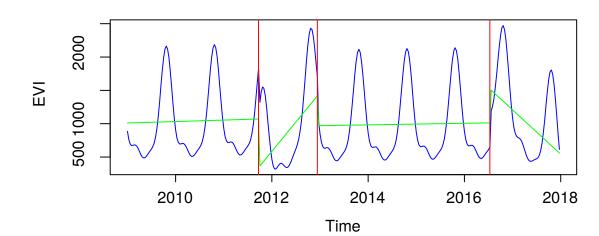
# Automated change detection in satellite image time series using BFAST Lite


Dainius Masiliūnas, Jan Verbesselt





#### About me

- Lecturer in the Laboratory of Geo-information Science and Remote Sensing, Wageningen University, Geoscripting course
- PhD in global land cover mapping and updating using time series analysis
- Maintainer of the `bfast` pacakge in R
  - All started by Jan Verbesselt



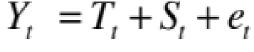


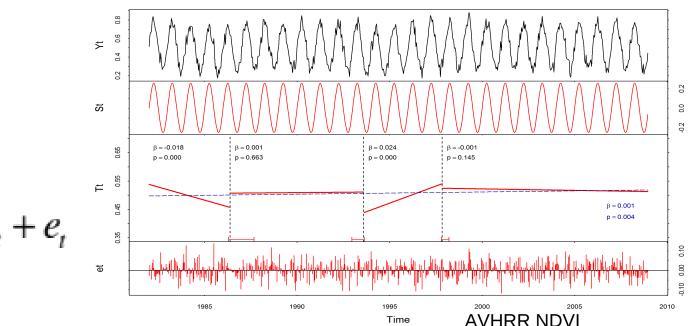
## Land cover change detection for map updating

- Reusing the same land cover classification model for the next year leads to too many spurious changes
- Use time series break detection to constrain changed pixels
- Or: detect changes in land cover fractions directly
- Many options for time series break detection algorithms!



Unlikely land cover change: from urban to water

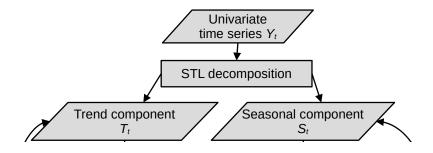




## Components of a SITS

The components of a time series (of a vegetation index):

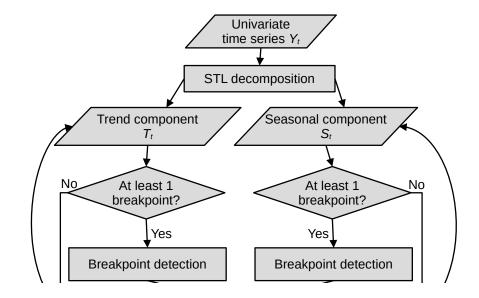






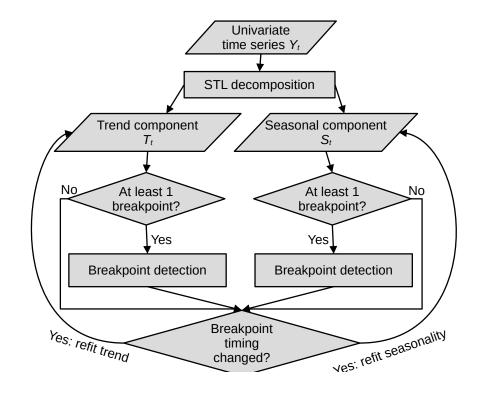



J. Verbesselt, R. Hyndman, G. Newnham, and D. Culvenor, Detecting trend and seasonal changes in satellite image time series, Remote Sensing of Environment, vol. 114, no. 1, pp. 106-115. (2010).




 Decomposition of time series into seasonal, trend and remainder components using stl()

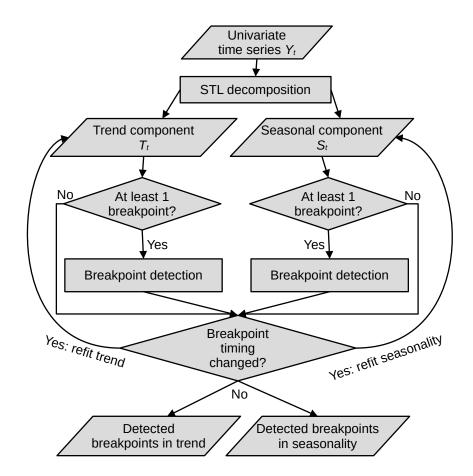





- Decomposition of time series into seasonal, trend and remainder components using stl()
- Components subdivided into stable segments, segment divisions are breaks

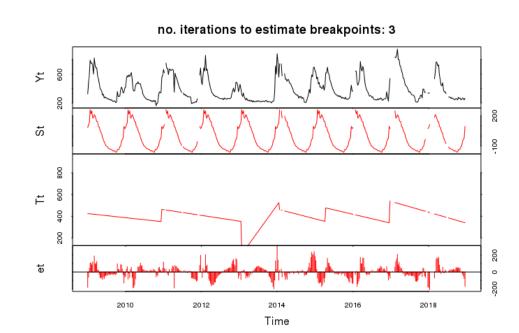





- Decomposition of time series into seasonal, trend and remainder components using stl()
- Components subdivided into stable segments, segment divisions are breaks
- Iterative (stl() on stable segments)






- Decomposition of time series into seasonal, trend and remainder components using stl()
- Components subdivided into stable segments, segment divisions are breaks
- Iterative (stl() on stable segments)
- Detects all breaks in the time series and specifies whether it's seasonality or trend break

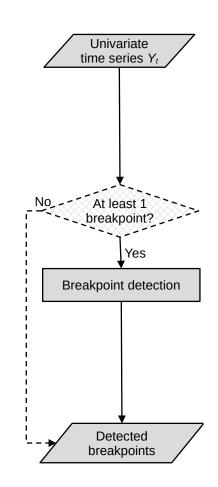




- Decomposition of time series into seasonal, trend and remainder components using stl()
- Components subdivided into stable segments, segment divisions are breaks
- Iterative (stl() on stable segments)
- Detects all breaks in the time series and specifies whether it's seasonality or trend break






#### **BFAST Lite**

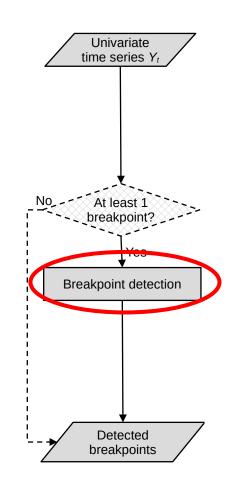
- Detecting breaks in all components at once in a single pass
- Can handle missing values
- More tunable parameters: can use harmonics (sin/cos) or seasonal dummies (multiple fitted intercepts per year) or external regressors to fit the data
- Is an order of magnitude faster than BFAST (in addition to speed improvements due to C++ code integration)

Masiliūnas, D., Tsendbazar, N.-E., Herold, M., & Verbesselt, J. (2021). BFAST Lite: A Lightweight Break Detection Method for Time Series Analysis. Remote Sensing, 13(16). https://doi.org/10.3390/rs13163308








#### **BFAST Lite**

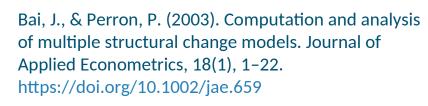
- Detecting breaks in all components at once in a single pass
- Can handle missing values
- More tunable parameters: can use harmonics (sin/cos) or seasonal dummies (multiple fitted intercepts per year) or external regressors to fit the data
- Is an order of magnitude faster than BFAST (in addition to speed improvements due to C++ code integration)

Masiliūnas, D., Tsendbazar, N.-E., Herold, M., & Verbesselt, J. (2021). BFAST Lite: A Lightweight Break Detection Method for Time Series Analysis. Remote Sensing, 13(16). https://doi.org/10.3390/rs13163308

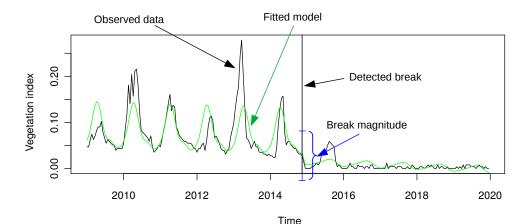




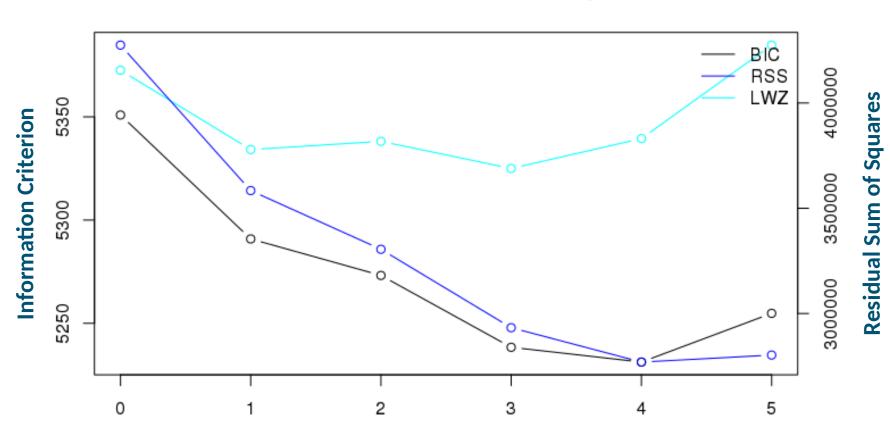



## Principle of breakpoints()

- Piece-wise linear regression:
  - Given that we want one break, and the minimum segment size *h*, what's the optimal location to put it so that the RSS of two segments is minimised?
  - What if we want two breaks?
  - Repeat to get a triangular matrix of all possible breaks and model RSS




#### Principle of breakpoints()

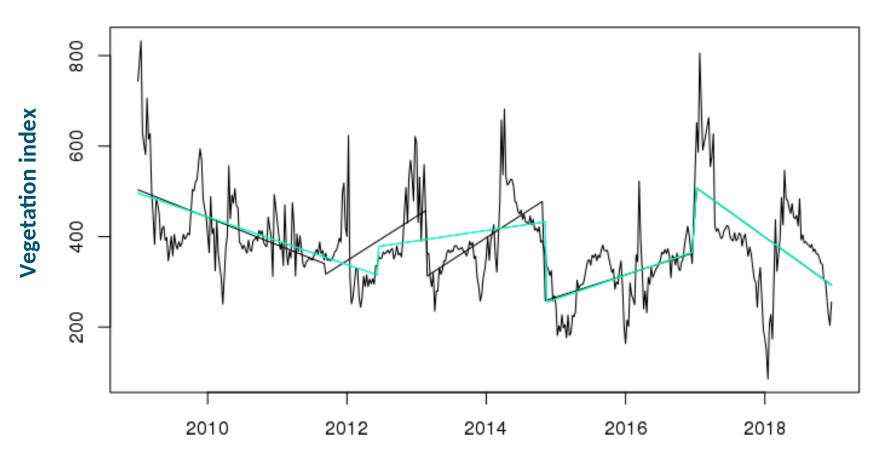

- Recursive residuals by Bai and Perron (2003) to solve faster than a grid search: O(T<sup>2</sup>) vs O(T<sup>n</sup>)
- But how many breaks does the time series have?
  - An Information Criterion: if we increase degrees of freedom by adding breaks, data will fit better, so penalise for each degree of freedom added
  - AIC (k=2) is too weak, BIC (k=log(n)) is used by BFAST
  - LWZ (k=0.299 × log(n)<sup>2.1</sup>) seems to do better and is default in BFAST Lite







#### Breakpoints using LWZ vs BIC




BIC, LWZ and Residual Sum of Squares

Number of breakpoints



### Breakpoints using LWZ vs BIC



Time



#### New in bfast 1.6

- Ability to use LWZ for selecting breaks
- Extra information when printing the results:
  - LWZ statistics
  - R<sup>2</sup>
  - Break magnitude, using difference between segment models and the difference in last/first predicted value
- Parameter for customisable seasonal dummy number



#### Potential features in bfast 1.7

- Structural change test to quickly screen large areas for no break pixels
- Automatic determination of a harmonic order (and number of seasonal dummies)
- Classification of time series typology: abrupt drop, gradual increase, interrupted increase etc. for all breaks in a SITS
- ...and more! Tell us your favourite feature at https://github.com/bfast2/bfast/issues/!



## Try BFAST Lite yourself!

- In the practical session, you will try it hands-on on Google Colab (hint: run the first block about package installation over the break, as it takes over 15 minutes!)
- Full tutorial about BFAST Lite and BFAST Monitor:

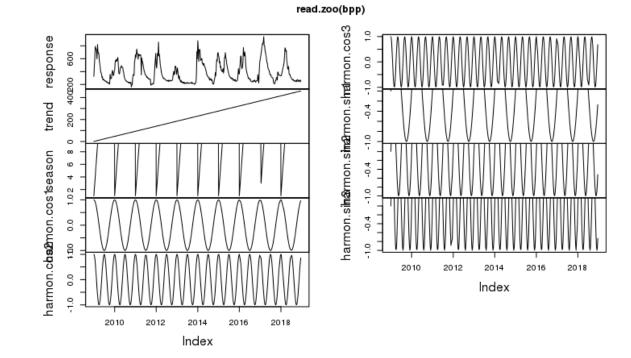
https://janverbesselt.github.io/BFASTforAEO/

 Paper with more details about the algorithm: Masiliūnas, D.; Tsendbazar, N.-E.; Herold, M.; Verbesselt, J. BFAST Lite: A Lightweight Break Detection Method for Time Series Analysis. Remote Sens. 2021, 13, 3308. https://doi.org/10.3390/rs13163308





# Thank you for your attention!


To explore the potential of nature to improve the quality of life



## bfastpp()

- How to get data with response ~ trend + harmon?
- bfastpp(ts, order): preprocessing of time series
  - ts must be a `ts` with frequency > 1
  - order is the harmonic order
- Output is a data.frame with:

AGFNING



## bfastlite()

- In the bfast pacakge: install.pacakges("bfast")
- bfast::bfastlite(data, formula, h, ...)
  - bfast::bfastpp() + strucchangeRcpp::breakpoints()
  - data: a `ts` object (see bfastts() if you don't have one)
  - formula: e.g. response ~ trend + harmon
  - h: minimum segment size, either fraction of the time series length or integer defining the number of samples
- Output: a list containing a `breakpoints` object that indicates breakpoint timing and confidence interval, in sample numbers (mapping to `data`); you can use plot() and summary() for more info

